Practice Specification
Fence (Code 382)

SCOPE

Fences are constructed as barriers to control the movement of animals and people, including vehicles. Fences may be designed or installed as permanent or temporary use.
Permanent fencing is intended to be in place for long periods of time with minimum maintenance requirements; therefore, it should be built with durable materials and constructed to endure a longer life span. Permanent fences are most often used for exterior grazing or property boundaries and/or where animals or humans are prohibited. This can include fencing associated with Waste Storage Facilities (WSF), Waste Transfer (WT), and Heavy Use Areas (HUA).

Temporary or moveable fences are designed to be in place for short periods of time. Temporary fences are best used as subdivision fences for frequent movement or control of animals and where the exact location of the fence may not be the same from time to time. This fencing offers maximum flexibility in rotational stocking systems for subdividing pastures to enhance grazing efficiency, livestock movement, and afford temporary stream and riparian protection.

FENCE TYPE OR STYLE (SEE Table 1)

Barbed wire fence is commonly used as multi- strand permanent fencing material for perimeter fences, land use boundaries, exclusion, livestock containment and isolation areas as well as interior cross fencing to facilitate grazing management. Barbed wire fence is generally not recommended for horses, sheep, goats and hogs.

Woven, net and mesh wire fences are used as permanent fences for both perimeter and subdivision fences. Wire spacing and height varies depending on the type of livestock or animals being controlled.
Woven wire fences consist of a series of horizontal (line) wires and vertical (stay) wires, and are offered in two main types including "hinge joint" and "continuous stay fixed knot."
In a hinge-joint woven wire fence, the vertical stays actually wrap around the line wires. In a continuous stay fixed knot fence, the vertical stay wires are fixed with a separate wire to the line wire. Both of these main types come in various designs (line and stay spacing), tensile strength grades and metallic coating types and grades. High-tensile continuous stay fixed knot woven wire at 12.5 gauge may be used for all animals as specified by manufacturer.

High tensile smooth wire fence is commonly used as a multi-strand permanent fence for both perimeter and subdivision purposes. It can be used to control almost all animals when properly spaced. Smooth wire may be steel, aluminum or vinyl coated and electrified or non- electrified.

Electric fences may be permanent or temporary. The electrical power source can be from 110 or 220 electrical current or battery. Batteries may be re-charged by solar or electrical power. Livestock must be trained to respect electric fence.
Board fences are usually wood or some composite material used for permanent and subdivision purposes. Board fence is used primarily where aesthetics or animal safety is a concern and most often used around horses or for working facilities.

Other fence types may include chain link, pipe, vinyl, galvanized panel, guard rail, and cable fences. These are commonly used around homesteads, waste storage facilities and in corrals. They may be used to restrict access to unsafe or prohibited areas.

Heavy use area containment fencing is used to control access into and out of feed areas to minimize damage to soil and pasture around these permanent feed sites. This fencing is usually constructed of board, pipe, guard rail, cable or high tensile smooth wire built to sustain heavy use by high numbers of livestock around a confined feed area.

Non-conventional fencing includes variations of alternative fence systems that may be acceptable when installed according to manufacturer's recommendations and pre- approved by the PA NRCS State

Grassland Conservationist. Alternative fence systems are often applicable for horses and other animals having special needs.

MATERIAL SPECIFICATIONS

Acceptable fencing criteria for various fencing needs may be selected from Tables 1 and 2; except when fencing requirements are shown in a set of Engineering Drawings and Specifications associated with WSF, WT, and HUA. Install as per details included; variations must be approved by the Engineer of Record.

The materials used in the construction of a chosen fence type must be new and of high quality and meet the size, strength, durability and lifespan requirements found in this specification including Tables 3-9.

Variations of what is presented in this document may be approved if alternatives will meet or exceed current specifications. Sufficient documentation must be presented to PA NRCS State Grassland Conservationist.

INSTALLATION

Fence-Line Clearing

Prior to construction, the fence line shall be cleared of any obstruction that would hinder fence placement and operation. Clearing along stream banks will be held to a minimum except as required for stream crossings. The soil surface along the fence line shall be relatively smooth such that placement of the bottom wire does not exceed specified maximum wire spacing from soil surface.

Setting posts

All post shall be set and maintained in a vertical position or leaning slightly (1-2" off vertical) away from direction of wire tension.

Posts in curves should be set approximately 4" off vertical. Posts set with a driver have about 9 times the holding strength of hand- set posts. If hand set, holes should be at least 6 " larger than the diameter of the posts and all backfilled material shall be thoroughly tamped in layers no thicker than 4 inches. The post hole shall be filled to the ground surface. Concrete backfill is not necessary when posts are driven or hand set with proper tamping; however, if used it shall be rodded into place in layers not thicker than 12 inches and shall completely fill the post hole to the ground surface. No stress shall be applied to posts set in concrete for 24 hours.

Line Posts

Specifications of line posts are found in Table 4. The maximum spacing of line posts for permanent fences is found in Table 1 and will be the same for all types of posts. Spacing will vary depending on terrain and pressure from livestock. Installation shall ensure that adequate fence height is maintained based on its purpose.
Note: Landscaping timbers should not be used for any post or brace component of a fence system.

Installing Curves

Installing curves in high tensile, woven wire, and barbed wire fences is permissible as long as the change in direction from one post to the next does not exceed 20 degrees. Posts on curves shall be 5 inch minimum top diameter for changes up to 14 degrees and 6 inch minimum top diameter for changes up to 20 degrees.

Posts on curves should be driven 48 inches deep with 4 inches of lean to the outside of the curve and spaced no closer than 4 foot apart. (In an 8 -foot long section, 14 degrees is approximately 24 inches off straight line and 20 degrees is approx. 35 inches off the straight line).

Line Posts - Stream Crossing

Anchor posts are required on both sides of a stream crossing. For crossings less than 16 feet wide, standard line posts set on both sides will be adequate. For crossings wider than 16 feet, or when nonelectrified heavy flood gate is used, a single H-brace assembly or other suitable brace shall be used.

- Where needed, flood gates will be attached below bottom wire and will be designed to allow water and debris to pass while still controlling livestock. Some type of hinged or breakaway floodgate works best.
Posts that are set in low areas or gullies may need to be weighted or anchored to prevent lifting out.

Stays or battens between line posts

Stays or wire spacers or battens may be used to maintain desired wire spacing between line posts; note that specifications for post spacing differs with and without stays (Table 1). Stays shall be secured sufficiently to remain in position along wire line.

Offset Brackets

Offset brackets made of galvanized high tensile spring wire with an insulator of high density polyethylene with ultraviolet stabilizer or porcelain can be attached to standard barbed wire fence or woven wire fence to provide transmission line and /or to protect a standard fence. Other corrosion resistant offset brackets with insulators that attach directly to the fence posts can also be used.

Place offset brackets up to 40 feet apart and attach to wires of standard fence next to post. If control of animals is desired, place offset brackets at $2 / 3$ the height of the animals to be controlled. Make sure no wires of the old fence come in contact of the electric fence wire, as a short will occur. Use offset brackets that hold the electric wire at least 4 inches from the non- electrified fence material.

Post Bracing

Bracing of anchor (pull) posts is required at all corners, gates, fence ends and at definite slope and alignment changes in the fence line. The type of fence, number of fence wires, and length of span will determine type, size and spacing of bracing required to support a fence. See table 8 for additional information.

Bracing shall withstand the forces of the fence load and transfer to the surrounding soil. They come in a number of configurations depending on the purpose and number of posts utilized. The length of braces should be at least 2 times the height of the fence fabric they are supporting. See Tables 5 and 6 for selection criteria and design specifications of single and double brace assemblies.

Corner braces are required at all points where the fence alignment has a change of 20 degrees or more from one post to the next. (In an 8-foot long section, 20 degrees is approx. 35 inches off the straight line).

End braces are required where fence ends and on both sides of gate openings and has pull from only one direction.

In-line pull post assemblies are located in straight sections of the fence line and where there are sudden changes in elevations, such as at the bottom and top of slopes. Tie off all wires at in-line pull assemblies and start new wires for the next fence section. Posts that are set in low areas or gullies may need to be weighted or anchored to prevent lifting out.

Single post braces may be used with 2- strand or less high tensile electrical wire (Table 7) if corner/end post are set 4' deep. If this cannot be accomplished, then a single H corner/end brace assembly should be used.

Brace Rails

Refer to Table 6 for Criteria and Specifications.

- Placement of the horizontal brace rail will be between the top two wires of the fence or fence fabric. This should be a minimum 3 feet above ground.
- The length of the horizontal brace shall be at least 2 times the height of the fence fabric it is supporting.
- The longer the brace rail the stronger the brace.
- The brace and anchor posts should be fastened to the compression brace using galvanized brace pins (3/8" X 9" and 3/8" X 4"), drilled through vertical post and into end of horizontal brace, 2" deep. An H-brace bracket (dacromet-coated heavy gauge steel) may be used in place of brace pins. Install with minimum 1.75 " screws.
- Do not notch vertical posts (wood) for stabilizing horizontal brace support as this will increase chance of wood rot.

Note: Landscaping timbers should not be used for any post or brace component of a fence system.

Adjoining Fences

A fence adjoining an existing fence must terminate in a brace assembly as required per fence brace specifications in Table 5, 6, and 7.

Tension of Brace (Guy) Wires

For guy wires use two complete loops of $121 / 2$ gage HT wire or one loop of 9 gauge soft wire, or a single $3 / 16$ " galvanized cable with cable lock.

For horizontal braces, brace wire will be double wrapped and stapled to brace post at a height of just above the brace member and to the anchor (pull) post at a point approximately 2-3 inches above the ground level.

Brace (Guy) wire will be tightened using a wire tightener or strainer. Another suitable method is to tension the brace wire with a chain grab and splice using a double crimp or compression sleeve.

INSTALLATION OF WIRE

Barbed and woven wire will be stretched to sufficient tension prior to being fastened to posts.
Temperature variations must be considered (wire will tighten in cold weather and expand in hot weather). See wire specification requirements in Table 3.

Tensioning the wire

Woven Wire - In warm weather, wire shall be stretched until $1 / 3$ of the height of the "tension curve" is removed. In cold weather, remove $1 / 2$ of the tension curve. Fixed-Knot High Tensile Woven Wire - The tension crimp should be $1 / 2$ the size of an un-tensioned crimp.

Barbed Wire - In warm weather, a 100 ft . stretch of wire should sag no more than 4 inches in the middle (prior to attaching to posts) and no more than 2 inches in cold weather.
High Tensile Wire - Tension should be 250 lbs. for cattle, horses, goats and sheep. For electrified high tensile wire the tension should be sufficient to maintain the proper average height and spacing of the fence wires.

Tension springs

In-line wire spring-tensioners are designed to indicate lbs. of tension on the line, assuming placement within the line is appropriate.

On most fences the use of one tensioner per pull will provide sufficient indication of the tension on adjacent wires.

Springs offer only 3-6 inches of elasticity therefore are of little benefit when something like a tree falls on the wire.

Staples and fasteners

Staples should be installed into post to allow free slippage of wire.

Staples shall be driven diagonally across the grain of the wood and at a slight downward angle (except in dips of landscape) and shall not be driven so tightly as to bind the wire against the post.

Electrically charged smooth wires must be attached to conductive posts with an appropriate ceramic, UV resistant HDPE (High Density Polyethylene) or HDPP (High Density Polypropylene) or tube type plastic reinforced insulators.

For steel line posts, the fencing shall be fastened with either 2 turns of 14 gauge galvanized steel wire or the post manufacturer's special wire clips. For all other types of posts, attach as specified by manufacturer.
Tie off of wire or insulators: High tensile wire is tied off using the "thread through method" (a half hitch and 3 wraps) or with compression sleeves. A length of high tensile wire is fastened around the groove of the insulator then looped around the post and stapled on opposite side of post. An alternative is the tubular plastic reinforced insulator to prevent cracking of the plastic and grounding of the wire. All insulators must be rated for use with high tensile fence.

Wire attachment to posts

Attaching Fence Wire to Anchor (Pull) Post: For Barbed wire fences, wires will be attached to anchor (pull) post by one complete wrap around the post, double stapled (wood posts) or wired (steel posts) and ends tightly wrapped around stretched wire five times. Compression sleeves may be used to connect ends of brace wire.

For Woven or Mesh wire, determine amount of wire needed to fully wrap around post once then remove enough vertical stays to provide that length. The wire ends are then attached as described in previous paragraph. All lines are stapled to the post.
For High Tensile wire, the line wires are attached to each anchor post by wrapping the post and securing with a half hitch with 3 wraps, or using appropriate double crimp sleeves.

Fixed-knot woven wire fence shall be stapled to wood post or fastened to steel post at every horizontal wire using manufacturer recommended wire c lips.

High Tensile electric wire that pulls through corners or bends may be suspended from the inside of posts in corners and bends using ceramic or appropriate UV resistant HDPE or HDPP donut type plastic high strain insulators. The tubular plastic reinforced high strain insulators can wrap around the outside of bends and corner posts.
Attaching Fence Wire to Line Post: Barbed wire shall be attached at each post with 1.5 inch staples driven to allow slippage. The top wire shall be at least 2 inches below the top of posts on wood posts and at least 1 inch below the top on steel posts. Wire shall be spaced no more than 10 inches apart and often closer depending on livestock controlled.
Woven wire and fixed-knot woven wire fencing shall be attached to posts at the top 3 and bottom 3 strands on every posts and then alternate every other line making sure you attached to the missed lines on the next alternating line post.

HT electric wire shall be attached using ceramic or appropriate UV resistant HDPE or HDPP plastic insulators. The tubular plastic reinforced high strain insulator can be used on the outside of corners, curves or bends.

Post side wire placement: the wire shall be placed on the livestock side of line posts and on the outside of curves and bends.

Wire Splicing

There are two basic ways to splice wire:

1. Hand knot
2. Crimping or compression sleeves (per manufacturer recommendation)

Barbed wire and woven wire shall be spliced by means of a western union splice or by suitable compression sleeves applied with a tool designed for the purpose.

Gates

Gates weighing less than 100 lbs may be hung from single end post properly installed. Heavy metal or wood gates more than 6 ft . wide shall best be attached to the pull post of an H -brace or diagonal floating brace.

All gates must be substantial enough to withstand expected pressures from livestock and wildlife.
A $121 / 2$ gauge overhead or insulated underground transmission line will be used to carry electricity across all gate openings (including electrified gates) to charge the remainder of the fence.

Gates Over Streams and Ditches

Hanging gates should terminate approximately 6 inches above average normal water level.
Non-electric flood gates should be hinged such that gate will swing with rising water during storm events.
An electrified flood gate may be used to minimize debris problems on stream crossings. The electrified flood gate is constructed by stretching an electrified wire across the drainage above high water flow level. Attach, with compression sleeves, hanging galvanized chains or wire to the electrified wire at a spacing of 6 inches for goats, hogs and sheep or 12 inches for cattle and horses. It is advisable to connect the gate to electric fence with double insulated cable through a cut-off switch and flood gate controller.

Stream Bank Protection

Permanent fencing will be placed at least 10 feet from the top of the stream bank and should allow for more area in meanders and in areas with bank erosion to minimize corner bracing. Permanent fencing setback distance from drainage ditches should be enough to allow sufficient room for vegetation management and fence maintenance.

SAFETY

- Electrical fences shall be clearly labeled or identified with the appropriate warning signs spaced every 300 feet where the public has access. Barbed wire shall not be electrified because of safety hazard.
- Fencing operations can result in painful and serious injury. Wear heavy gauntlet leather gloves to protect hands and wrists, and boots or high-top shoes to protect legs and ankles.
- Tough, close fitting clothing will reduce risks of catching on wire. Wear safety glasses to protect eyes from injury. When stretching woven, fixed- knot, or barbed wire, stand on the opposite side of the post from the wire and stretcher unit.
- It is dangerous to use a tractor to stretch wire fencing because of potential breaking of the wire resulting in serious injury from the recoil of the clamp bar, chain, or wire. Keep chains and wire stretching clamps in good condition.
- Carry staples, nails, or other fasteners in a metal container or in an apron and not in your trouser pockets. Do not hold fasteners in your mouth which is a common but extremely dangerous habit.
- If you handle preservative treated posts, do not rub your hands or gloves on your skin, nose, eyes, or month. Wash your hands after handling treated posts. Minimize the inhaling of sawdust. Do not burn treated posts or apply the ash to a garden. Properly dispose of treated wood in a landfill.

Additional conditions which apply to this practice:

1. A professional fencing contractor is recommended during the planning phase of any fence system.
2. Woven wire for sheep and goats should have vertical wire wide enough (9 " to $12^{\prime \prime}$) or narrow enough (<4 ") to minimize potential injury. Otherwise use an electric offset wire to keep animals away from woven wire that might "entangle" them.
3. Never use household electrical wire for any part of an electrified fence. Splicing wires of different metals often results in oxidation and corrosion which causes short circuits and poor conductivity.
4. A digital voltmeter is essential to monitoring and maintaining electrical power fences.
5. Avoid placing electrical fences parallel with telephone or commercial power lines since static field can sometimes be created.
6. It is recommended that fences be located 20 feet or more from streams with a maintenance gate to allow for emergency access to water. This distance can also lessen fence maintenance by reducing flood damage. Temporary fencing may be used to protect streambanks while using forage adjacent to the stream.

PA NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE STANDARD FENCE (382)									
Table 1. Permanent Fence Selection Criteria									
Fence design and construction must meet the minimum requirements for controlling specific animal types.									
Animal Type to Control	Fence Type	Purpose of Fence				Suggested Spacing (in. above ground) ww fences start 2-4" above ground	Line Posts and Stay Spacing (Maximum spacing)		
		Perimeter	Travel Lanes	Interior Subdivision	Surface Water Exclusion		Posts w/o stay	Post with stay	$\begin{aligned} & \text { Stay } \\ & \text { Spacing } \end{aligned}$
		Minimum Criteria				Inches	Feet		
Cattle	Barbed 3-wire	NO	Meets	Meets	NO	18, 28, 38	16	20	10
Cattle	Barbed 4-wire	Meets	Exceeds	Exceeds	Meets	14 to 44 evenly spaced	12	20	10
Cattle	Barbed 5-wire	Exceeds	Exceeds	Exceeds	Exceeds	10 to 46 evenly spaced	12	20	10
Cattle	Non-Electric 6-wire high tensile smooth	Meets	Exceeds	Exceeds	Meets	9 to 46 evenly spaced	16	30	10
Cattle*	Non-Electric 8 -wire high tensile smooth	Exceeds	Exceeds	Exceeds	Exceeds	6 to 46 evenly spaced	16	30	10
Cattle	Electric 1-wire high tensile smooth	NO	Meets	Meets	Meets	26-32	60	NA	NA
Cattle	Electric 2-wire high tensile smooth (both hot)	NO	Meets	Exceeds	Meets	20,34	50	80	20
Cattle	Electric 3 -wire high tensile smooth (min. 2 hot)	**NO	Exceeds	Exceeds	Exceeds	13, 24, 36	50	80	20
Cattle	Electric 4-wire high tensile smooth (min. 2 hot)	Meets	Exceeds	Exceeds	Exceeds	8, 20, 32, 44	50	80	20
Cattle	Electric 5 -wire high tensile smooth (min. 2 hot)	Exceeds	Exceeds	Exceeds	Exceeds	8, 16, 24, 34, 44	50	80	20
Cattle	Woven wire (hinge joint) plus one or more HT or barbed top wires	Meets	Exceeds	Exceeds	Meets	$47 \mathrm{~min}, 6^{\prime \prime}$ max between top wires	10	NA	NA
Cattle	HT woven wire (hinged joint) plus one or more HT or barbed top wires	Meets	Exceeds	Exceeds	Meets	$47^{\prime \prime} \mathrm{min}, 6^{\prime \prime}$ max between top wires	20	NA	NA
Cattle	HT Woven wire (fixed knot)	Meets	Exceeds	Exceeds	Meets	47 min	20	NA	NA
Cattle	Wood or Composition 4 board ($6^{\prime \prime}$ wide)	Exceeds	Exceeds	Exceeds	Exceeds	6,6,8,10 between boards	8	NA	NA
Goats \& Sheep ${ }^{\text {tak }}$	Electric 3 -wire high tensile smooth (min. 2 hot)	NO	Meets	Meets	NO	6, 18, 35	50	80	20
Goats \& Sheep ${ }^{\text {man }}$	Electric 4-wire high tensile smooth (min. 2 hot)	NO	Exceeds	Exceeds	Meets	6, 16, 26, 36	50	80	20
Goats \& Sheep ${ }^{\text {"** }}$	Electric 5 -wire high tensile smooth (min. 2 hot)	Meets	Exceeds	Exceeds	Exceeds	6, 12, 18, 28, 38	50	80	20
Goats \& Sheep	Woven wire plus one HTE offiset inside	Meets	Meets	Meets	Meets	$42^{\prime \prime}$ min, one HTE offset $2 / 3$ animal ht	10	NA	NA
Goats \& Sheep	Woven wire plus one or more HT or Barbed top wires to $48^{\prime \prime}$	Meets	Meets	Meets	Meets	$36 \mathrm{~min}, 6^{\prime \prime}$ max between top wires	10	NA	NA
Goats \& Sheep	HT fixed knot woven wire plus one or more HT or Barbed top wires to $48^{\prime \prime}$	Meets	Exceeds	Meets	Meets	42 min, $6^{\prime \prime}$ max between top wires	20	NA	NA
Horses***	Electric 2-wire high tensile smooth (both hot)	No	Meets	Meets	Meets	28, 38	50	80	20
Horses ${ }^{\text {T... }}$	Electric 3-wire high tensile smooth (min 2 hot)	No	Exceeds	Exceeds	Exceeds	28, 38, 48	50	80	20
Horses***	Electric 4-wire high tensile smooth ($\min 2$ hot)	Meets	Exceeds	Exceeds	Exceeds	$18-54$ evenly spaced, minimum 2 hot	50	80	20
Horses	Woven wire ($2^{\prime \prime} \times 4^{\prime \prime}$ openings max.)W/1 wire HT on top	Meets	Exceeds	Exceeds	Meets	$48+$ HT at 54	10	NA	NA
Horses	HT vinyl-coated or polymer encased ($2^{\prime \prime} \times 4^{\prime \prime}$ openings)	Meets	Exceeds	Exceeds	Meets	$48+\mathrm{HT}$ at 54	10	NA	NA
Horses	HT woven wire (fixed knot) (2"X $4^{\prime \prime}$ openings max.)	Meets	Exceeds	Exceeds	Meets	60	20	NA	NA
Horses	Mesh "No climb" (2 "X4" spacing)	Exceeds	Exceeds	Exceeds	Exceeds	$48+\mathrm{HT}^{\text {T at } 54^{\prime \prime}}$	16	NA	NA
Horses	Wood or Composition boards ((6" wide)	Exceeds	Exceeds	Exceeds	Exceeds	18 min .12 max. between boards	8	NA	NA

PA NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE STANDARD FENCE (382)											
Table 1. Permanent Fence Selection Criteria Continued											
Fence design and construction must meet the minimum requirements for controlling specific animal types.											
Animal Type to Control	Fence Type	Purpose of Fence				Suggested Spacing (above ground) ww fences start 2-4" above ground	Line Posts and Stay Spacing (Maximum spacing)				
		Perimeter	Travel Lanes	Interior Subdivision	Surface Water Exclusion		Posts w/o stay	Post with stay	$\begin{aligned} & \text { Stay } \\ & \text { Spacing } \end{aligned}$		
		Minimum Criteria				Inches	Feet				
Hogs	Electric 2-wire high tensile smooth (both hot)	NO	Meets	Meets	Meets	6-10, \& 16-18	20	30	15		
Hogs	Electric 6-wire high tensile smooth (min 2 hot)	Meets	Exceeds	Exceeds	Exceeds	6, 12(+), 18(+), 26, 34, 42	20	30	15		
Hogs	Woven wire 32" w/ barbed wire	Meets	Exceeds	Exceeds	Meets	$32+1$ barb above, and one barbed $2^{\text {" }}$ off ground and $2^{\prime \prime}$ below woven wire	10	NA	NA		
Hogs	Woven wire $32^{\prime \prime} \mathrm{w} / 1 \mathrm{HT}$ electric inside	Meets	Exceeds	Exceeds	Meets	$32+1$ barbed or HTE 6^{*} above and one HTE wire $8^{\prime \prime}$ off ground, $8^{\prime \prime}$ inside of fence.	10	NA	NA		
Hogs	HT woven wire (fixed knot) $32^{\prime \prime} \mathrm{W} / 1$ barb or HTE	Meets	Exceeds	Exceeds	Meets	$35^{\prime \prime}+1$ HTE offset like above	20	NA	NA		
Deer ${ }^{\text {+1/4* }}$	HT woven wire (fixed knot) $96^{\prime \prime}$ tall with $12^{\prime \prime}$ verticals	Meets	Meets	Meets	Meets	96	20	NA	NA		
Deer ${ }^{\text {².... }}$	Electric 7 -wire High tensile smooth wire slanted	Meets	Meets	Meets	Meets	see diagram of slant measurements	30	100	25		
Deer ${ }^{\text {comen}}$	Electric 9-wire High tensile smooth wire	Meets	Meets	Meets	Meets	8 , to 72 evenly spaced	30	100	25		
Deer ${ }^{\text {².... }}$	Electric 12-wire High tensile smooth wire	Exceeds	Exceeds	Exceeds	Exceeds	6, to 72 evenly spaced	30	100	25		
Deer ${ }^{\text {+124* }}$	Electric 15-wire High tensile smooth wire	Exceeds	Exceeds	Exceeds	Exceeds	2, to 96 evenly spaced	30	100	25		
Buffalo	Electric 4-wire high tensile smooth	NO	Meets	Meets	Meets	16 to 42 evenly spaced	30	100	25		
Buffalo	Electric 5-wire high tensile smooth	NO	Exceeds	Exceeds	Exceeds	16 to 48 evenly spaced	30	100	25		
Buffalo	Electric 6 -wire high tensile smooth	Meets	Exceeds	Exceeds	Exceeds	12 to 52 evenly spaced	30	100	25		
Buffalo	HT woven wire (fixed knot)	NO	Meets	Meets	Meets	48	20	NA	NA		
Buffalo	HT woven wire (fixed knot)	Meets	Exceeds	Exceeds	Exceeds	60	20	NA	NA		
Chickens/turkey	Woven wire 2"x4" 1 wire HT or barb above	Exceeds	Exceeds	Exceeds	Exceeds	72	10	NA	NA		
Emu and ostrich	Woven wire $2^{\text {" }} \times 4$ " 1 wire HT or barb above	Exceeds	Exceeds	Exceeds	Exceeds	72	10	NA	NA		
Chickens/turkey	HT Woven wire $2^{\prime \prime} \times 4$ " 1 wire HT or barb above	Exceeds	Exceeds	Exceeds	Exceeds	72	18	NA	NA		
Emu and ostrich	HT Woven wire 2"x4" 1 wire HT or barb above	Exceeds	Exceeds	Exceeds	Exceeds	72	18	NA	NA		
People WSF	Chain link	Meets Preferred option				60	10	NA	NA		
People WSF	Electric 15-wire HT	Meets				4 to 60 evenly spaced	8	NA	NA		
People WSF	Woven wire 48 inch plus 3 barbed wires or 2 HT electric	Meets				48 min . WW with HT or barb at 4 "space to 60 . HT may be electrified	10	NA	NA		
Use the information in this table as a guide to determine the number of strands and spacing requirements. Adjustments may be made based on manufacturer's recommendations and landowners preference for confinement with NRCS approval.											
associated engineering drawings.											
*"May be used as perimeter fence for dairy cattle only.											
\cdots If the goats or sheep are not trained to electric fencing. then high tensile electric fencing is probably not a good option for the livestock operation.											
${ }^{* * * *}$ Consideration for visibility should be taken when using high tensile fence for horses. Poly coated or vinyl encased wire or rail can be used following manufacturer recommendations for installation.											

PA Natural Resources Conservation Service Conservation Practice Standard Fence (382)						
Table 2. Temporary Fence Selection Criteria						
Fence design and construction must meet the minimum requirements for controlling specific animal types.						
Animal Type to Control	Fence Type ${ }^{1}$ (all wires hot)	Purpose of Fence			Suggested Spacing Above Ground	Line Posts (maximum spacing)
		Travel Lanes	Interior Subdivision	Surface Water Exclusion		
	Electric 1-wire Polywire or Polytape or galvanized steel braided wire	Minimum Criteria			Inches	Feet
Cattle		Meets	Meets	Meets ${ }^{2}$	26-36	40
Cattle	Electric 2-wire Polywire or Polytape or galvanized steel braided wire	Exceeds	Exceeds	Exceeds	20, 32	40
Goats/Sheep	Electric 4-wire Polywire or Polytape	Meets	Meets	NO	8, 16, 24, 32,	40
Goats/Sheep	Electric Net Fencing ${ }^{3}$	Meets	Meets	Meets	0, (minimum 35 inches tall)	built in ${ }^{4}$
Horses	Electric 1-wire Polywire or Polytape	Meets	Meets	NO	34	25
Horses	Electric 2-wire Polywire or Polytape	Exceeds	Exceeds	Meets	28,40	25
Hogs	Electric 2-wire Polywire or Polytape or galvanized steel braded wire	Meets	Meets	NO	8, 18	40
	Electric Net Fencing ${ }^{3}$	Meets	Meets	Meets	0 , (35 inches tall)	built in ${ }^{4}$
Poultry	Electric Net Fencing ${ }^{3}$	Meets	Meets	Meets	0 , (minimum 40 inches tall)	built in ${ }^{4}$
${ }^{1}$ Livestock must be trained to respect electric fencing prior to using temporary fence products for complete containment.						
${ }^{2}$ Two wires may be needed to prevent young calves from going beneath the fence.						
${ }^{3}$ Use electric netting specifically designed for the type of livestock being controlled; it is not suggested for small animals with horns (consider spacing of vertical stays and horizontal lines and fence height).						
${ }^{4}$ Line posts are typically built into the rolls of netting near 12.5 feet spacing.						
Based on the type of livestock, use the information in this table as a guide to determine the number of strands and spacing for different types of temporary fencing products. Adjustments may be made based on manufacturer's recommendations and landowners preference and ability to control the livestock. Temporary fencing products are not intended to be used as permanent or semi-permanent containment fencing.						

PA Natural Resources Conservation Service Conservation Practice Standard Fence (382)				
Table 3. Wire Specifications				
Wire Type	Minimum Wire Size	Minimum Wire Coating/Composition	Wire Strength and Other Considerations	
Barbed, Standard Double Strand (must meet ASTM A121)	12.5 gauge (ga.) with 4 point barbs spaced on 5^{p} centers 15.5 ga. with 4 point barbs spaced on 5^{7} centers	Class 3 zinc coating per ASTM A641- Class 3 zinc coating per ASTM-A641	950 lbf	
Barbed, High- Tensile Double Strand (Gaucho Wire) (must meet ASTM A121)	15.5 ga. 4 point barbs	Class 3 zinc coating per ASTM-A641	$170,000 \mathrm{psi}$ or 950 lbs .	
High Tensile Smooth single strand (must meet ASTM A854)	12.5 ga .	Class 3 zinc coating per ASTM-A641	200,000 psi or 1540 lbs .	
High Tensile Vinyl Coated or Polymer Encased Wire	12.5 ga .	UV resistant polymer	$1,300 \mathrm{lbs}$ per wire or 4,000 lbs per rail	Can be used for permanent fences
Galvanized Steel	14 ga.	Class IV	160 lbs	Can be used for 1 or 2 wire temporary fences
Standard Woven Wire "hinged joint" or continuous stay "fixed knot" (must meet ASTM A116)	Top \& Bottom wires: 12 gauge min. Intermediate wires: 12.5 ga .	Class 3 zinc coating per ASTM A641	Horizontal and vertical sp appropriate for animal typ woven fence are related t the fence fabric. For exam 10 line wires is $47^{\prime \prime}$ high h and is 12.5 gauge.	should be esign numbers of characteristics of 1047-12-12 1/2 has " stay wire spacing
High Tensile Woven Wire (must meet ASTM A116)	12.5 gauge	Class 3 zinc coating per ASTM A641	$175,000 \mathrm{psi}$ on line wires	
Mesh Wire; such as Horse-No-Climb	Top \& Bottom wires: 12.5 gauge Intermediate \& Stay Wires: 12.5 gauge	Class 3 zinc coating per ASTM A641	At least $48^{\prime \prime}$ high, less th inch mesh spacing.	qual to 2 -inch $\times 4$ -
Polywire or "Twine * - Type	Minimum of 6 strands of aluminum, stainless steel or mixed metal wires	Wires interwoven with polyethylene or	Polywire (twine-type), as more durable under frequ is best used where high visi	ared to polytape is ovement. Polytape y is needed. Do not
Polytape or TapeType	Minimum $1 / 2$ inch wide and 5 strands of stainless steel or mixed metal wire filaments		use on fences more than conductivity). Life expectancy is 3-5 yea	in length (lowoved frequently.
Aluminum	12.5 gauge	Aluminum	May be used as one of th fence or as single wire su used as lead out cable fro fence.	s in a multi-wire ion fence. May be wer Energizer to
Steel wire and hardware used to construct a permanent fence will be new and galvanized material. Not all materials are for permanent or containment fencing, reference Table 1 to ensure the fence material selected is appropriate for the type of fence and the livestock to control.				

PA Natural Resources Conservation Service Conservation Practice Standard Fence (382)			
Table 4. Line Post Type, Size and Depth Specifications			
Fence Type	Post Type	Minimum Diameter/ Weight	Minimum Depth*
	Pressure treated wood (Material Spec 585), black locust, red cedar (>50\% heartwood)	4"	$30^{\prime \prime}$
Woven Wire Smooth High Tensile wire non-electrified	Steel T posts ${ }^{1}$ Steel U posts ${ }^{1}$ Steel L posts ${ }^{1}$ (When using steel posts, wooden posts shall be set every $4^{\text {th }}$ post)	$\begin{aligned} & 1-3 / 8^{\prime \prime} \times 1-3 / 8^{\prime \prime} \times 1 / 8^{\prime \prime} \text { thick } \\ & 2^{\prime \prime} \times 1-1 / 4^{\prime \prime} \times 3 / 32^{\prime \prime} \text { thick } \\ & 2^{\prime \prime} \times 2^{\prime \prime} \times 1 / 4^{\text {n thick }} \end{aligned}$ All 1.25 lbs . per foot, exclusive of anchor plates	$18^{\prime \prime}$
	Steel pipe, galvanized	2" outside diameter	$18{ }^{\prime \prime}$
Smooth High Tensile wire electrified	Pressure treated wood (Material Spec 585), black locust, red cedar (>50\% heartwood) bb	$4 "$	$30^{\prime \prime}$
	Steel T posts ${ }^{1}$ Steel U posts ${ }^{1}$ Steel L posts ${ }^{1}$ (When using steel posts, wooden posts shall be set every $4^{\text {th }}$ post)	$\begin{aligned} & 1-3 / 8^{\prime \prime} \times 1-3 / 8^{\prime \prime} \times 1 / 8^{\prime \prime} \text { thick } \\ & 2^{\prime \prime} \times 1-1 / 4^{\prime \prime} \times 3 / 32^{\prime \prime} \text { thick } \\ & 2^{\prime \prime} \times 2^{\prime \prime} \times 1 / 4^{n} \text { thick } \end{aligned}$ All 1.25 lbs . per foot, exclusive of anchor plates	$18^{\prime \prime}$
	Fiberglass ${ }^{2,4}$	$5 / 8^{\prime \prime}$	$16^{\prime \prime}$
	HDPE ${ }^{3.4}$	$1.33^{\prime \prime}$ (per manufacturer recommendations)	$12^{\prime \prime}$
	Composite ${ }^{3,4}$	$\begin{aligned} & 11 / 8^{"} \\ & \text { (per manufacturer recommendations) } \end{aligned}$	$16^{\prime \prime}$
	PVC T or H posts ${ }^{3,4}$	1.5^{m}	$12^{\prime \prime}$
Stays (Battens, Droppers, or Spacers)	Wire stays Composite Fiberglass Steel T post w insulators Wood PVC	12 ga. galvanized for barbed wire $1^{\prime \prime}$ $1 / 2$ " Listed above $1.5^{\prime \prime} \times 1.5^{\prime \prime}$ 1"	Stays are not always designed to touch the soil surface, but should be sufficient to maintain wire spacing
Temporary Electric Fences	Fiberglass, composite, plastic, PVC, steel rod	$3 / 8{ }^{\prime \prime}$	4 "

${ }^{1}$ All steel posts shall be new and painted or galvanized.
${ }^{2}$ Fiberglass posts should be coated to prevent splintering and cracking.
${ }^{3}$ All HDPE, PVC and composite material must be UV protected.
${ }^{4}$ Fiberglass, composite, PVC and HDPE posts are not to be used in bends, curves or at places in the fence with abrupt changes in elevation. *Minimum depth unless specified by manufacturer. If top fence wire is greater than 60 inches minimum depth increases, consult NRCS technical specialist during design for approval prior to construction.

\begin{tabular}{|c|c|c|c|}
\hline PA \& ces Conservation \& \&) \\
\hline \multicolumn{4}{|r|}{Table 5. H-Brace Pull Post (corner, gate and end) Specifications} \\
\hline Brace Post Type \& Minimum Top Diameter \& Depth Anchoring \({ }^{1}\) \& Other \\
\hline Pressure treated pine (Material Spec 585) or other wood of suitable strength: red cedar (\(>50 \%\) heartwood), black locust. \& \begin{tabular}{l}
6 " top diameter (corners, ends, pull posts and gates); \\
\(5^{\prime \prime}\) top diameter all other wooden brace posts
\end{tabular} \& 48

48 \& | Minimum post lengths should allow for required buried depth and fence height plus at least 2 inches of post above top wire. |
| :--- |
| Posts will have appropriate treatment to prevent rust and deterioration. |

\hline \multirow[b]{2}{*}{Steel round pipe braced ${ }^{2}$} \& 2-3/8" nominal; 7 $\mathrm{lbs} / \mathrm{ft}$. or equivalent \& $36^{\prime \prime}$ set in 12 in diameter hole with concrete \& \multirow[t]{3}{*}{| The assembly strength of a corner post set 2.5 ' deep is approximately half compared to a post set at 3.5^{\prime} deep. |
| :--- |
| A single post brace assembly can be used as bracing for $\leq 2 \mathrm{HT}$ smooth electric wires. See Table 7. |}

\hline \& 4" nominal; 10 lb./foot or equivalent \& $36^{\prime \prime}$ driven \&

\hline Steel, angle iron braced ${ }^{2}$ \& $2.5^{\prime \prime} \times 2.5^{\prime \prime} \times 0.25^{\prime \prime}$ \& $36^{\prime \prime}$ set in 12 in diameter hole with concrete \&

\hline \multicolumn{4}{|l|}{| If top fence wire is greater than 60 inches depth anchoring increases, consult NRCS technical specialist during design for approval prior to construction. |
| :--- |
| ${ }^{2}$ All steel posts shall be new and galvanized. |}

\hline
\end{tabular}

PA Natural Resources Conservation Service Conservation Practice Standard Fence (382)			
Table 6. Brace Rail Specifications for H-Brace			
Brace Member Type	Minimum Diameter/ Weight	Typical Length	Other
Pressure treated pine (Material Spec 585) or other wood of suitable strength; red cedar ($>50 \%$ heartwood), black locust.	4 inches	8-10 feet	Posts will be straight and free of splintering. Posts will have appropriate
Galvanized steel pipe ${ }^{\text {² }}$	$\begin{aligned} & 2^{"} \text { diameter, schedule } \\ & 40 \end{aligned}$	8-10 feet	The wider this brace the stronger
Steel, angle iron ${ }^{1}$	$2.5^{\prime \prime} \times 2.5^{\prime \prime} \times 0.25^{\prime \prime}$	8-10 feet	
${ }^{1}$ All steel posts shall be new and galvanized.			

PA Natural Resources Conservation Service Conservation Practice Standard Fence (382)			
Table 7. Single	ost Brace ${ }^{1}$ Specifica	ons for 1-2 strand	high tensile electric fence only
Brace Post Type	Minimum Top Diameter	Minimum Depth Anchoring	Other
Steel round pipe or tubular steel ${ }^{2}$ (galvanized)	2.5 " outside diameter schedule 40	$24^{\prime \prime}$ set in $12^{\prime \prime}$ diameter hole with concrete	For single wire fences, concrete not needed if posts are driven 3 feet deep
Steel angle iron ${ }^{2}$	$2.5^{\prime \prime} \times 2.5^{\prime \prime} \times 0.25^{\prime \prime}$		
Steel ${ }^{2}$	$4^{\prime \prime}$ outside diameter		Concrete not needed
Pressure treated pine (Material Spec 585) or other wood of suitable strength; red cedar (>50\% heartwood), black locust.	6 inch (post must be driven)	48"	If single brace post cannot be installed to $48^{\prime \prime}$, use a corner or end brace.
'Single posts as braces should lean approximately 4 inches away from the direction of pull.			
${ }^{2}$ All steel posts shall be new and galvanized.			

PA Natural Resources Conservation Service Conservation Practice Standard Fence (382)			
Table 8. Maximum Brace Assembly Spacing (on straight and level pulls)*			
Fence Type	Distance Between Anchor (pull) Posts (ft.)	End / Corner Brace Types	Inline Brace Type
Barbed Wire and Standard Woven (net) wire (Hinge Joint)	0-600	Single H Brace	NA
	601-1,320	Double H Brace	NA
	>1,320	Double H Brace	Double H Brace
High Tensile Fixed Knot Woven Wire (Continuous Stay) ${ }^{2}$	0-1,320	Single H Brace	NA
	>1,320	Double H Brace	Double H Brace
Smooth HT wire -non-electrified or electrified	3-6 strands ${ }^{1}$	Single H Brace	N/A
	$6+$ strands	Double H Brace	N/A
*The maximum distance between anchor posts of a brace assembly will often be shorter than what is listed in this table due to abrupt changes in topography or fence direction that will require closer brace assembly spacing.			
*All wires must be tied off at in-line pull assemblies and new wires started for the next fence section.			
*Use this information as a guide to determine bracing requirements for the type of fence being constructed. Minor adjustments may be made based on topography and the number or height of fence wires installed with NRCS approval.			
Single post brace assembly of suitable diameter can be used for fences with 1-2 strands HT electric wires, see Table 7 . ${ }^{\text {B }}$ Build HT fixed knot WW fence according to recommendations of the fencing manufacturer.			

PA Natural Resources Conservation Service Conservation Practice Standard Fence (382)			
Table 9. Specifications of other Fence Components			
Component	Description/Specification		
Electrical Energizers or "Chargers"	Energizers for permanent electric fencing must be manufactured for the purpose of agricultural fencing and be high power, low impedance that can produce at least 5,000 volt peak output and a short pulse less than 300 milliamps (mAmps$)$ in intensity, finished within 0.0003 of a second, and at a rate of 35-65 pulses per minute. It is recommended that the energizer have a fence charge meter. Only one charger is allowed per fence. It is recommended the unit include a high impact self- insulating weather resist case, a snap-in circuit panel, a safety pace fuse, a lightening arrester, have full power input and reduced power output. May be solar, 110 or 220 volt, or 12 volt battery units. OUT PUT Joule rating should be based on the size of fence system, the type of fence being electrified and high enough to provide a minimum shock at the farthest point in the fence. To control most livestock it is recommended to maintain fence line voltage $\geq 3,000$ volts. Use higher voltage for sheep, goats and predator control.		
Lightening Arrestor	A properly grounded lightning arrester and a "lightning choke" shall be installed to protect the energizer from lightning strikes. A voltage spike protector is also recommended.		
Electrical Insulators	Insulators shall be made of high quality glazed porcelain or UV resistant HDPE or HDPP plastic manufactured for durability under high tensile strain. UV resistant tubular plastic insulators that		
wrap around end and corner posts must have a reinforced strip to prevent cracking and grounding			
under high tensile strain. Galvanized 12.5 gauge wire may be used on fiberglass and other non			
conductive posts to secure wire to post.			

Specific Site Requirements

